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C O M P L E X - P O T E N T I A L  M E T H O D  IN  T H E  N O N L I N E A R  T H E O R Y  OF E L A S T I C I T Y  

V. D.  B on d ar '  UDC 539.3 

For materials characterized by a linear relation between Almansi strains and Cauchy stresses, 
relations between stresses and complex potentials are obtained and the plane static problem of 
the theory of elasticity is thus reduced to a boundary-value problem for the potentials. The re- 
sulting relations are nonlinear in the potentials; they generalize well-known Kolosov's formulas 
of linear elasticity. A condition under which the results of the linear theory of elasticity follow 
from the nonlinear theory considered is established. An approximate solution of the nonlin- 
ear problem for the potentials is obtained by the small-parameter method, which reduces the 
problem to a sequence of linear problems of the same type, in which the zeroth approximation 
corresponds to the problem of linear elasticity. The method is used to obtain both exact and 
approximate solutions for the problem of the extension of a plate with an elliptic hole. In these 
solutions, the behavior of stresses on the hole contour is illustrated by graphs. 

1. For plane deformation of an elastic body, the strength analysis is based on solution of the plane 
problem. In the present paper, we consider the plane static problem for stresses within the framework 
of the nonlinear theory of elasticity using the Almansi and Cauchy tensors used as the strain and stress 
measures, respectively. The static problem of the nonlinear theory of elasticity in the actual-state variables 
is described by the following equations of equilibrium and continuity equations, Murnaghan's  stress-strain 
relations, representations of strains and their invariants in terms of displacements, and boundary conditions 
(in particular, force conditions) on the body surface [1, 2]: 

div P + p f  = 0, V = P/Po = ~/1 - 2~1 + 4a2 - 893,  

dF 
ai = t ra .  e2 = ( t r s )  2 - t r a  2, s = det~, P = V(G - 2a) �9 -~-, 

2 ~ = V u + u V - ( V u ) . ( u V ) ,  P . n = p  on E. 

Here u,  n,  f ,  and p are the displacement vector, the outward normal, and the mass- and surface-force 
vectors, respectively, G, P,  and r are the metric tensor, the Cauchy stress tensor, and the Almansi strain 

tensor, ~espectively, r r r F,  p, P0, and V are the basic strain invariants, the density of the elastic 
potential, and the initial and relative densities of the material, and E is the surface of the deformed body. 
For two-dimensional deformation of an isotropic body, these relations define the following plane problem of 
elasticity in the complex coordinates of the actual state z = x + iy and 5 = x - iy (x and y are Cartesian 

coordinates) [3-5]: 

Op 11 Opi2 
O----Z + ~ + p f l  = 0, V = x/1 - 2el + 492, E1 = g 1 2  4 g  2 ~-- ( e12)2  __ ellg22 

p l l  =/1522  _ 2M(~1, a2)e ii, p12 = p2i  = 2N(ei, s  12, (1) 
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311 = g22 = 2 " - ~  0,~, ,] '  1 -- ~--- 0Z / 0Z ./ + 0~- 0Z ' 

p12 dz _ p l l  d_._55 = 2ipl(s  ) on L, 
ds ds 

where h i  and N are the coefficients of elasticity, L is the section of the body cut by the deformation plane, 
and s is the arc coordinate of a contour point. 

Relation (1) contains contravariant complex components of vectors and tensors (denoted by numerical 
superscripts), which are related to Cartesian components of the corresponding quantities by the transforma- 

tion formulas [4] 

u 1 _o N i l  = u" = Ux + iuy, = [=)22 = Pz:c - Pyy + 2iPzy, p12 = Pzz + Pvv; (2) 

Murnaghan's  law is written in a form similar to Hooke's law, with the significant difference that  the coefficients 
of elasticity are functions of the basic strain invariants and are expressed in terms of the elastic potential by 

the formulas 

2 M  = - V  20e----[OF + ~OF , 2e lN  = V 2(1 - g l )  --0~1 + (el - 4e2) ~ . (3) 

Inversion of these formulas gives the expressions for the potential  gradients: 

V3 OF = ( s l - 4 e 2 ) - A f + e l N ,  V3 0 F  _ 2 ( 1 - ~ l ) 2 1 I - 2 e l N .  
0el 0e2 

which lead to the following differential condition for the coefficients of elasticity: 

20[e~N + (1 - e l )M] O[elN + (el - 4s2)M] 
0el + 0s2 + 6M = 0. (4) 

2. Eliminating th e displacements and strains from system (1), we obtain equations for stresses. Elim- 
ination of the displacements and their first and second derivatives from the expressions for strains leads to 
the strain compatibility equation [5] 

4[(1 - ~12)2 _ ] ~  [2]R e (~11 _ ~12) 

_ 9T~ r=llr:22t,,~.12 _ e l l )  
- -  (1 -  12)[1 1 12 + 2 - 2 2] +  z.5 z - ( ~ 2 2 ) 2 ] } .  (5)  

To eliminate the strains, we first convert from E1 and e2 to the strain invariants Jt and J2, which 
are related to the complex components by the simpler expressions el = J1, 4e2 = J~ - J2, J1 = e12, and 
J2 = cite22. Thus, the continuity equation and Murnaghan's  law in (1), and the condition for the coefficients 

of elasticity (4) become 

V = V/(1 - J1) 2 - J2, p l l  = t522 = 2_AI(J1, j2)s l l ,  p12 = 2N(J1, J2)~ 12, 
(6) 

O[JIN + (1 - J1)M] _ 2 0[J1(1 - J1)N + J2M] + 3 M  = O. 
031 O J2 

We introduce the basic stress invariants I1 a n d / 2  having the same structure as the strain invariants 
J1 and J2: Is = p12 a n d / 2  = pl lp22 .  We assume that  the conditions 

o( J2) o( Jt, J2) 
0(11,-/-2) # 0, 0 ( I1 ,  I2--------~ # ec,  (7) 

which ensure reversibility of relations between the pairs of invariants J1 and J2 and I1 an d /2 ,  are satisfied. 

Murnaghan's  law can be inverted and written as 

e l l  -= g22 ____ 2R( I1 , /2 )P  11, e 12 = 2T( I1 , /2 )P  12, (8) 

where R and T is another pair of the coefficients of elasticity. It follows from (6) and (8) that  the coefficients 
of elasticity of different types and the stress and strain invariants are related by the formulas 

4 M R = l ,  4 N T  = I, I I = 2 N J 1 ,  I 2 = 4 M 2 J 2 ;  JI = 2TI1, ,12=4R212. (9) 

121 



Formulas (8) and (9) enable one to eliminate the strain components and invariants from Eqs. (5) and 
(6) and express them in terms of stresses. Supplementing these by the equation of equilibrium and boundary 
condition from (1), we arrive at the following problem for stresses: 

cop 11 cop 12 
0--"~ + ~ + P~ = 0, V = X/( I  - 2Tp12) 2 - 4R2pllp 22, 

~02Rpll 02TP12. 
2V2Re[ ~ "~z"~z ] =(1-2rPle)[IORPI~Iu+[, Oz I 2 0ToP12 ORp 112_ 20RPl l  2] 

Oz Oz ] 

+4Re{ RP11[cORP22[T \(20Tp1205 ORPII"~ ] - \---~z /fORp22~2]J }' (10) 

p12 __dz _ pli __d5 = 2ipl(s) on L, 
ds ds 

( 0,) 0.  0 .  0 , )  
2R 2§ (1-- 2Iir) 211 0[2 ~11 +412(T§ R) ~2 +411/2 ~1 012 012 ~ 1  = O. 

3. We consider plane deformation in the absence of mass forces for materials characterized by a linear 

relation between the Almansi and Cauchy tensors: 

f l  = 0, R = const, T = const. (11) 

In this case, condition (10) for the coefficients of elasticity implies tha t  one of the coefficients can be arbitrary 

and the other must vanish: 

R = 0, T = const. (12) 

We note that ,  in this case, the strain invariants are dependent quantities: J1 = 2TI1 and J2 = 0, and the 
condition of reversibility of the invariants (7) fails. It  follows from (9) tha t  the coefficients M and N must 

have the values 

M = 1/(4R) = oe, N = 1/(4T) = const. (13) 

According to (3), the coefficients (13) are related to the elastic potential  F(J1, J2) by the formulas 

V OF OF 1 - J1 OF 2J2 OF Al--- ~+2(1-J1)V , N -  - -  V - -  - - V - -  
0 ,12 J1 O J1 J1 03"o.' 

V = X/(1 - J1) 2 - J2. 

The second relation can be regarded as a differential equation for the elastic potential, whose general solution 

has the form 
( 1 -  J1~1_1_.( J1 1 ~VJ.___.il In V) (14) 

where (9 is an arbi t rary function. The  potential  (14) defines the class of materials for which one of the 

coefficients of elasticity is constant and the other is variable: 

N =  1 ( ~ . ~ )  1 - l n V  
4"~ = const, M = e '  4T (15) 

The  values of the coefficients (13) can be t reated as the limiting values of the coefficients (15) when 

J2 -~ 0 and (9'((1 - J1)/V) = IO'(1)1 = co. In this case, the limiting value of the potential  (14) has the form 

F(J1 ,0 )  = O(1) + (1/(4T))[1/(1 - J1) - l n ( 1 / ( 1  - J1))]. In order for the potential  to be finite, the quantity 
O(1) must be bounded. Thus, a material with a linear stress-strain relation belongs to the class of materials 
whose elastic potential  has the form (14) and is characterized by the conditions J2 ---* 0, IO1 ---* [(9(1)1 < oc, 

and I@'1 --* I@'(1)l = co. 
Under conditions (11) and (12), the plane problem (10) is simplified and takes the form [6] 
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Op 11 Op 12 
0---~- + c9----~ = 0, V = 1 - 2Tpi2;  (16) 

(1 - 2TP 12) 022Tp12 02Tp12 02Tpi2 
OzO5 + - ~  (17) 

pi2 dz _ pU d2 
d'-'s d--s = 2ipi on L. (18) 

The equations of the problem admit full integration and representation of stresses in terms of the complex po- 
tentials, and the boundary condition leads to a boundary-value problem for the potentials. Indeed, Eq. (17) is 
representable as a second-order nonlinear equation for the relative density V 02V/Oz 05 -  (OV/OS)(OV/Oz) = 
0, whose general solution is expressed in terms of an arbitrary function [the complex potential c~'(z)l in the 
form V = o"(z)#'(5). Thus, the density p and the stress p12 are given by 

p = po~ ' ( z ) ( r ' ( 2 ) ,  p 1 2  = ( 1 / ( 2 T ) ) [ 1  - o"(z) ,5" ' (5) ] .  (19)  

With allowance for (19), the equation of equilibrium (16) defines the stress pU:  

u l l  = (1/(2T))[o'(z)o'"r(5) - -  "Y"(.~)]. (20) 

Here w'(z) is an arbitrary function (the second complex potential). Substituting the stresses (19) and (20) 
into condition (18) and integrating along the contour, we obtain the following boundary-value problem for 
the complex potentials: 

z -a ( z )e ' (5 )+~(5)=4T(g l ( s )+C)  on L, g i ( s ) = i [ p l ( s ) d s  ( C = c o n s t ) .  (21) 
0 

Thus, in the variant of nonlinear elasticity considered, the stresses and density are expressed in terms 
of two complex potentials by nonlinear formulas and the potentials, in turn, must be determined from a 
nonlinear boundary condition. 

The problem for stresses (16)-(18) can also be formulated for a stress function. We express the stresses 
in terms of the real stress function U(z, 5) by the formulas 

02U 02U = _ _  p12 = 4 - - .  (22) p n  =/522 - 4  050, Oz 05 

As a result, the equation of equilibrium is satisfied identically, and the strain compatibility equation and the 
boundary condition constitute the following boundary-value problem for the stress function: 

(1 - 2TAU)AAU + 8T(AU)e(AU)z = 0 (AU = 4Uz_~); (23) 

8 

= (2U )o + i / p l ( s )  ds. (24) 

0 

This problem can also be reduced to a problem for potentials. Integration of Eq. (23) yields the nonlinear 
relation between the stress function and the potentials a(z) and T(Z): 

1 @5-o'(z)gr(2)+/~-(z)dz +/zz (5)  dS). (25) 2 U =  u  

With allowance for (25), formulas (22) are transformed into (19) and (20) and condition (24) becomes the 
boundary condition for the potentials (21). 

For a more convenient comparison between the results obtained and results of the theory of linear 
elasticity, we convert from (r(z) and r(z) to the complex potentials c;(z) and r using the formulas 

or(z) = z - 4T~(z),  ~-(z) = 4T0(z).  (26) 

Then, the stresses (19) and (20), the stress function (25), and boundary condition (21) are given by 
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p l l  = t522 = -2[z@"(5) + ~'(2,) - 4Tqo(z)95"(5)], p12 = 2[c2,(z ) + 9?,(5 ) _ 4T~'(z)@'(2)], 

2U = 5p(z) + z~(5) + / O(z)dz + / V)(5)d2-4T~(z)@(5), (27) 

r + zr + ~(5) - 4T~(z)~'(5) = g'(s) + C on L. 

These formulas generalize the Kolosov formulas of linear elasticity [7, 8]: 

p , ,  = p~2 = - 2 [ ~ " ( ~ )  + ~'(~)], p~2 = 2[~'(z) + r 
(28) 

2U= 5~(z) 

and differ from the latter only by terms that  are nonlinear in the potentials and contain the elastic constant 
of the material as a factor. We now establish a condition under which (28) follow from formulas (27). 

Let P0 and L0 be the characteristic stress and dimension and a = 4TPo be the dimensionless parameter 
(characteristic dimensionless stress). We express the examined quantities in terms of the corresponding 
dimensionless quantities denoted by asterisk: p l l  = pop~.~, p12 = pop~.2, U = PoL~U., z --- Loz., ~ = 
PoLos. ,  ~ = PoLoW., g~ = PoLog~., and C = PoLoC. and introduce these into (27). As a result, we have 

p . ,  = p.22 = -2[~.~' . '  + ~'.] + 2 ~ . r  

2U. = 5.9~. + z .~ .  + f ~b. dz. 
J 

p)2 2[~', + r ' - '  = - 2 a ~ . ~ . ,  

+ f ~.  dS. - a~.r 
J 

(29) 

~ .  + z.~'.  + •. - a~.~.- '  = g.~ + c . .  

Assuming that  all the dimensionless quantities have finite magnitudes in a closed plane domain and the 
dimensionless parameter is small compared to unity (c~ ~ 0), in (29) we can neglect small terms (containing the 
parameter) compared to terms of finite magnitude. As a result, formulas (29) (after reverting to dimensional 
quantities) coincide with the formulas of linear elasticity (28). Thus, for elastic materials characterized by 
a linear stress-strain relation, the formulas of linear elasticity follow from the nonlinear formulas when the 
characteristic dimensionless stress is small (a << 1). 

4. Conformal mapping reduces the boundary-value problem for the potentials in a singly-connected 
(finite or infinite) plane domain S (with boundary L) to a boundary-value problem for a unit circle K 
(with circumference 7) or the exterior of the circle. Let the conformal mapping be specified by the function 
z = w(~), w'(~) ~ 0, and ~ = rexp(iS) E g .  Then, the complex potentials take the form c2(z ) = ~(~), 
~'(z) = ~'(~)/w'(~) = ~(~), ~(z) = ~p(~), and ~p'(z) = ~p'(~)/w'(~) = ~(~), and the stresses (27) become 

p l i  = / 5 2 2 = - ( 2 / e ' ( ~ ) )  [(w(r - 4Tp(r 
(30) 

p12 = 2[~5(~) + ~(~) - 4Te#(;)~(~)]. 

The polar coordinates r and 0 in the plane of the circle correspond, by virtue of the mapping, to orthogonal 
curvilinear coordinates in the physical plane. The stress components Prr, Pro, and P00 in these coordinates 
are related to the complex components by the formulas [1, 2] 

P~ - Poe + 2iP~o = (~/~)(ff/(~)/w'(~))P 11, P~r + P00 = p12. (31) 

As regards the boundary condition in (27) (where we can set C = 0), it becomes the boundary condition for 
the unit circle: 

~(r + (w(r - 4T~(r  + ~,(~) = g~, r ~ 7. (32) 

Solution of this problem gives the complex stresses (30) and thereby the real stresses (2) or (31). 
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Using the small-parameter method, we construct an approximate solution of the nonlinear boundary- 
value problem (32). Writing the factor 4T as 4 T  = a / P o  and assuming the parameter  a to be small (compared 
to unity),  we seek the complex potentials in the form of series in this parameter: 

oo 

= X :  r  = ( 3 3 )  
~=0 v=0 

(%~v and ~bv are the component potentials). By virtue of (30) and (31), similar expansions are written for the 
stresses: 

p l l  = E ~  .w~ , ' n l l  p22 = E ~  /-~ ,vn22 p12 = ~ 0 ~ , / ~ 1 2  

u=0 u=0 ~----0 

oG oG o~ 
~" , K "  aup~" K "  a~p, .  

P ~  = ~ a Pr Pro =/__.  ~o, POe = / _ . .  oo" 
v=0 u=0 v=0 

Here the stress components are expressed in terms of the component potentials: 

v i i  ~ t~22 -/  -1 7/ = - ( 2 / w  + - p12 = 2[~)b, ..[_ (~, _ p o l  ((i)(]~)~,_l], 

.v--1 (~1 ((~ (~),-- 1 E (I)k (~ t*- 1-  k' 
w I 

k=0 k=0 

+ P;o= PY, 

We determine the n th  approximation of the stresses (34) by finite 
determined by the required accuracy of solution): 

PrVr - P~O -]- 2iPrVo = ( ~ / ( ) ( ' ~ / / W ' )  P l1"  

(34) 

(35) 

sums (the approximation order is 

n n 
v n l l  22 ~ urn22 12 ~ u n l 2  

P~,:) = a *T, , P(n) = 2_., a *T, , P(n) = 2__.a zT, , 
u=0 v=0 u=0 

" r r  ~ r r ,  * rO  ~ t O ,  ~ 0 "  
v=0 v=0 u=0 

(36) 

To find the potential  components, we substitute (33) into condition (32). Comparing the coefficients of the 
same powers of the parameter  on both sides of the equality, we obtain the sequence of linear problems of the 
same type for the potentials ~ and y)~: 

-!  -! 
~ + ( w / w ) ~  + ~ = gl~,o + ( 1 / ( P 0 ~ ' ) ) ( ~ ' ) ~ - I  on % 

(37) 
g--1 

= ( .  = 0,  1,  2 . . . .  ). 
k=0 

Here the first problem (v = 0) coincides with the problem of linear elasticity and for each of the next problems, 
the right side of the boundary condition is calculated from the solutions of the previous problems. 

5. We consider the problem of the extension of a plate with a hole within the framework of a nonlinear 
model. Let an unbounded plate with a hole be in equilibrium under bulk tension produced by stress P0 at 
infinity. It is assumed that  in a deformed state, the contour of the hole is free of tractions and has the shape 
of an ellipse with semiaxes a and b (a > b). We find the stress field in the plate and study its properties. 

Cartesian axes are made coincident with the axes of the ellipse so that  the x axis is directed along the 
major axis of the ellipse. The equation of the ellipse (contour L) is then written as x2 /a  2 + y2/b2 = 1. The 
confbrmal mapping of the exterior of the ellipse in the z plane onto the exterior of a unit circle in the 4 plane 

is defined by the transformation 
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z = x + iy  = w ( O  = n ( (  + m / ( ) ,  ( = r exp (i8) E K, 
(38) 

O < n = ( a + b ) / 2 < c ~ ,  O < m - - ( a - b ) / ( a - b b ) <  1, 

where the parameters  m and n give, respectively, the shape and dimensions of the hole (as m --* 0, the ellipse 
degenerates into a circle, and as m ---* 1, it is degenerated into a rectilinear slit). Consequently, the relation 
between the Cartesian and curvilinear coordinates in the z plane is given by the formulas x = n ( r  + m / r )  cos 8 
and y = n ( r - m / r )  sin 8. In this case, the curvitinear coordinates r and 8 are elliptic, i.e., the curves r = const 
correspond to ellipses and the curves 8 -- const to hyperbolas (the boundary ellipse corresponds to r = 1): 

x 2 y2 x 2 y2 
+ = n 2, - -  = 4ran 2. 

(~ + m/r)2  ( r _ . ~ / ~ ) 2  cos 2 8 sin 2 8 

The boundary  conditions on the hole contour and at infinity are writ ten in real and complex forms: 
8 

p l = p x + i p y = O ,  g l = i / p l d s = O  for r = l ;  (39) pz = py = O; 

0 

P ~ = P ~ = P o ,  P Z = 0 ;  P 2 = P 2 2 = 0 ,  P 2 = 2 P 0  for r = o c .  (40) 

By virtue of (39), the condition for the potentials (21) (where we can set C = 0) becomes homogeneous; after 
the conformal transformation (38), it takes the form 

~(~) - ~ ( ~ ) x ( 0  + ~ ( 0  = 0, x ( 0  = ~ ' ( 0 / w ' ( 0 ,  ~ ~ ~. 

Using the analytic continuation, we write this condition as the following functional equation for the exterior 

of the circle K:  

~ ( i / O  - ~ ( i / O x (  0 + 7 ( 0  = o. ~ s k .  (41) 

We seek a function a(~) that  is similar in form to the mapping (38) and contain two free real parameters  
c and d. The  function T(() is then given by Eq. (41). As a result, the potentials take the form 

n ( c ( + r n d ~  v ( ( ) =  { c + m d ( 2  c ( 2 - m d  1 + m ~ 2 ~ .  
dr(() (42) 

% 

The potentials (42) correspond to the following expressions for the stresses (19) and (20) [transformed by the 

mapping (38)]: 

(1 c~2 - m d  c~ 2 - m d  
r (2 - ~ )' 

p12 
~ A  \ 

(43) 
~ ( 2 ~ ( ~ j  ~ ) ( ;~ -  1) c( - ~d~ + c -  .~d~ c~ ~ - m d  + . ~  - 1 p l l  

2T(~ 2 - m) \ ((2 _ m)2 ( ~2 ~2 _ m ~2 /" 

At infinity, the stresses in the plate have the form P ~  = (1 - c2)/(2T) and p l l  = ( m / ( 2 T ) ) ( 1  - cd). 

Consequently, the conditions at infinity (40) are satisfied if 

d = 1/c,  c 2 = 1 - 4 T P o .  (44) 

According to formulas (31), (38), (43), and (44) [where ( = r exp (i8) and ~ - -  r exp ( - i8)] ,  the elliptic stress 

components are writ ten as 

Po P0 Prr = ~ (r 2 - 1)(r 4 - -  m 2 ) (  c 2 r 2  - -  m2), PrO = - - c 2 E 2  2mr2(r  2 - 1 ) ( c 2 r  2 - r~l 2) sin 28, 

P0e = c -~E 2P~ [2(c2r 4 _ m 2 ) E  _ (r 2 - 1)(r  4 - m2)(c2r 2 - m2)], (45) 

E = r 4 + rn 2 - 2 m r  2 cos 20. 

126 



F o r m u l a s  (45) gives an exac t  so lu t ion  of  the  p rob l em.  Thus ,  t he  s t ress  d i s t r i b u t i o n  in a p la t e  wi th  a hole 

d e p e n d s  on the  tens i le  force, t he  e las t ic  cons t an t  of the  ma te r i a l ,  and  the  shape  of  the  hole and  does  not  

d e p e n d e n t  of  t he  hole d imens ions .  I t  follows f rom the  express ion  for c 2 (44) t h a t  t he  so lu t ion  o b t a i n e d  is 

va l id  for the  a p p l i e d  force only when  P0 < 1 / ( 4 T ) .  O n  the  hole con tou r  L ( r  = 1), t he  s t resses  a re  

2Po c 2 - m 2 

= = o,  = c2 1 + m 2  - 2. cos 2 o  ( 4 6 )  

For  def ini teness ,  we assume t h a t  P0 > 0. W i t h  a l lowance  for t he  def in i t ion  of t he  p a r a m e t e r s  and  the  

l i m i t a t i o n  on t i le  tens ion,  we o b t a i n  0 < P0 < 1 / ( 4 T ) ,  0 < c 2 < 1, and  0 < m 2 < 1. By v i r tue  of  the  

i nequa l i t y  l + m  2 - 2 t a c o s  20 >1 ( 1 - m )  2 > 0, f rom (46) it  follows t h a t  t he  s ign of  t he  s t ress  p L  is d e t e r m i n e d  

by  the  s ign of the  difference c 2 - m 2. We cons ider  different  cases. 

In  the  case of weak  tension,  where  P0 < (1 - m 2 ) / ( 4 T )  (c 2 > m2) ,  we have  p t  > 0, i.e., the  hole 

con tou r  is e x t e n d e d  and  
p +  = ( p L ) m a  x 2Po c 2 - m  2 

= c 2 ( l - m )  2 for 2 0 = 0 a n d 2 ~ r ,  

p _  = (PL)mi  n 2Po c 2 - rrz 2 
= c 2 ( l + m )  2 for 2 0 = ~ r a n d 3 7 r ,  

where  t he  values  20 = 0 and  2,7 co r respond  to po in t s  on t h e  m a j o r  axis of the  el l ipse and the  values  2/9 = 7r 

a n d  3zr c o r r e s p o n d  to those  on the  minor  axis.  W h e n  c 2 > m 2 and  0 < a = 4TPo < 1, we can  set  c 2 =- 1 - a 

and  m 2 = 1 - v/-a. Consequent ly ,  

c ~ . m2(2 o 4P0 l + m  p _ _  4P0 1 - m  
= - m ' ) ,  P + =  2 - m  2 l - r e '  2 - m  2 l + m "  

I t  follows t ha t  in the  l imi t ing  case of  a c i rcular  hole, P+ --~ 2P0 and  P_ --~ 2P0 as m --~ 0, i.e., on the  b o u n d a r y  

circle,  the  tens i le  s t ress  is cons t an t  and  twice t he  app l i ed  s tress .  In  the  l imi t ing  case  of a rec t i l inea r  slit ,  we 

f ind t h a t  P+ --~ 0r and  P_  --, 0 as m ---* 1, i.e., t h e  tensi le  s t ress  t ends  to  infini ty a t  t he  sli t  ends  and  is equal  

to  zero in the  m i d d l e  of i ts  sides. 

In  t he  case  of  neu t r a l  tens ion,  where  P0 = (1 - m 2 ) / ( 4 T )  (c 2 = m2),  we have  p L  = 0, i.e., t he  hole 

con tou r  is neu t ra l .  Thus ,  there  exis t s  a tensi le  force (which d e p e n d s  on  the  p r o p e r t i e s  of  the  m a t e r i a l  and  

the  s h a p e  of t he  hole)  for which the  hole con tour  is ne i the r  compressed  nor  ex t ended .  In  the  l imi t ing  cases, 

we o b t a i n  P0 --~ 1 / ( 4 T )  as m --* 0 and  P0 --* 0 as m --* 1, i.e., for a c i rcu la r  contour ,  th is  force coincides  wi th  

t he  m a x i m u m  tension,  and  for a sl i t ,  it  coincides  wi th  the  m i n i m u m  tension.  

Final ly ,  for s t r ong  tension,  where  P0 > (1 - m 2 ) / ( 4 T )  (c 2 < rn2), we have p L  < 0, i.e., the  hole con tour  

is compressed ,  so t h a t  

2Po m 2 - c  2 2Po m 2 - c  2 
P -  - c 2 (1 - m) 2 for 20 = 0, 2rr, P+  - c 2 (1 + m) 2 for 20 = ~r, 3m 

W h e n  c 2 < m 2 and  0 < a = 4TPo < 1, we can  set  c 2 = 1 - a and  m 2 = 1 - a 2. Then ,  

2Po Vfi - m2 ' p + =  2P0 V/i  - m2" 
c 2 = 1 - V/1 - m 2, P -  - (1 - rn) ----------~ - (1 + m)  2 - 

I t  is c lear  t h a t  in t he  l imi t ing  case  of  a c i rcu la r  hole, P_ ---* - 2 P o  and  P+ --+ - 2 P 0  as m --+ 0, i.e., on a 

circle,  t he  tens i le  force is cons t an t  and  twice t he  a pp l i e d  force. In  t he  case  of a slit ,  we have P_ --~ - c o  and  

P+  --~ 0 as m --+ 1, i.e., the  compress ive  force is inf in i te ly  large  a t  t he  ends  of  the  sli t  and  is equa l  to  zero in 

t he  m i d d l e  of t he  sides.  

I t  also follows from (45) t h a t  for r* = re~c, t h e  s t resses  can be  w r i t t e n  in a fo rm s imi lar  to  t he  con tour  

s t resses  (46): 2P0( c2 _ m2) 

Pr*r = Pr*o = O, P~*O = c 4 + m 2 - 2mc  2 cos 20 '  

c 4 + m  2 - 2 m c  2cos20~> (c 2 - m )  ~ > 0 .  
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Thus, an elliptic contour L* exists such that  it is confocal with the boundary ellipse L and, like the latter, 
undergoes only tension-compression. The  stresses Poo and p L  are opposite in sign. The contour L* occurs 
in the plate only in the case of strong tension, where it undergoes tension and encompasses the compressed 
contour L: c 2 < m 2 and r* > 1 (for neutral  tension, it coincides with the hole contour, and for weak tension, 
it lies inside the hole). 

6. Using the small-parameter method,  we now seek an approximate solution for the above problem in 
the case where the applied load corresponds to the quanti ty c~ = 4TPo that  is small compared to unity. 

For the zeroth-order potential  components,  the boundary-value problem (37) (for u = 0) coincides with 
the problem of linear elasticity 

~o(r + (r + m) / ( r  - m r 1 6 2  + ,Wo(r = O, r e % 

Its solution and the corresponding stresses are well known [1]: 

~o(r = (nPo/2) (r  - m /C) ,  ~0(r = -n P 0 (1  + m2)r162 9- - m), 

Pr ~ = ( P o / E  2) (r 2 - 1)(r 4 - m 2) (r 2 - m~), (47) 

P ~  o = ( P o / E : ) 2 m r 2 ( r  2 - 1 ) ( r :  - s i n  2 0 ,  

P20 = (Po lE2) (  r4 - m2)[ 2E  - ( r2 - 1)( r2 - m2)] �9 

These results can also be obtained from the nonlinear formulas (26), (42), and (45) for c ~ 1 and they 
correspond to weak tension. 

[8]: 

The first-order potential  components are determined from the problem (37) (u = 1): 

r  c21(r + r mr @ i ( ~ )  + @1(~) -~- nPo r _ m 1 + m e  2 
-- 4 r 1 -- rnr 2' r G 3'. 

These potentials and the corresponding stresses are determined using the functional-equation method 

= ( n P o / 8 ) ( r  - 3 m / r  = - n P o m 2 r 1 6 2  2 - m ) ,  

Plrr = - ( P o / E 2 ) r n 2 (  r2 - 1)( r4 - m2), P)o = - ( P o / E 2 ) 2 m 3 r 2 (  r2 - 1) sin 20, (48) 

P~o = - ( P o / E 2 ) m 2 [  2 E  - ( r2 - 1)( r4 - m2)] �9 

Finally, the second-order potential  components  are determined from the problem (37) for u = 2: 

r + m nPo 2m(r 4 - 1) + (1 - 3m2)r 2 
~2(r + r - me 2) ~3~(~) + ~(r  = 8 r - me 2) , r E 3 .̀ 

Using t?he same method,  we infer that  these potentials and the corresponding stresses have the form 

~2(r = (nPo/8 ) ( r  - 3 m / r  ~b2(r = - ( n P o / 8 ) ( 1  + 9m2)r162 2 - m),  

Pr2r = (P~  - 1 ) ( r 4  - m 2 ) ( r 2  - 9m2)' (49) 

P20 = ( P o / ( 8 E 2 ) ) 2 m r 2 ( r  2 - 1)@ 2 - 9m 2) sin 20, 

P~o = (Po / (8E2) ) [2E(  r4 - 9m2) - ( r2 - 1)( r4 - Ttz2)( r2  --  9m2)] - 

Thus, according to (35) and (36), as a zeroth approximation, the stresses are given by formulas (47): 

P(~ = P~rr = ( P o l E 2 ) (  r2 - 1)( r4 - rn2)( r2 - m2), 

prO) 0 = ( P o / E 2 ) 2 m r 2 ( r  2 1)(r 2 - m 2)sin20, (50) o = P r o  
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Fig. 1 

Po(O) = pO e = ( P o / E 2 ) [ 2 E ( r 4  _ m 2) _ @2 1)(r 4 m2)(v2 _ m2)]; 
0 - -  - -  

as a first approximation, the stresses are given by formulas (47) and (48): 

p # )  = FOr + a p ) ~  = ( P o / E 2 ) ( r 2  _ 1)(r4 _ .z2)[r2 _ m2(1 + a)], 

P(r~ ) = P~ + aPr10 = ( P o / E 2 ) 2 m r 2 ( r  2 - 1)jr 2 - m2(1 + a)] sin 20, (51) 

P(o~ ) = P~ + aP~o = ( P o / E 2 ) { 2 E [  r~ - m2( 1 + a)] - @2 _ 1)(r 4 _ m2)[r2  _ m2(1 + a)]}; 

formulas (47)-(49) give the stresses as a second approximation: 

p(2)  = pO r + aP)~  + a 2 P ~  : ( P o / E 2 ) ( r  2 - 1)(r 4 - m2)[r2(1 + a2/8)  - m2(1 + a + (9/8)a2)1, 

P(ro ) = Pr~ + aplro + aZP2o = ( P o / E 2 ) 2 m r 2 ( r 2  - 1)Jr2(1 + a2/8)  - m2(1 + a + (9/8)a2)] sin 20, 

2 (52) p(2) = pO ~ + ap~o + a . p ~  0 ( P o / E 2 ) { 2 E [ r 4 ( 1  + a 2 / 8 )  - m2(1 + a + (9/8)a2)] oo 

-- (r 2 -- 1)(r 4 -- m2)[r2(1 + a2/8)  -- m2(1 + a + (9/8)a2)]}. 

On tile hole contour (r  = 1), tile nonzero stresses in the approximate solutions (50)-(52) are 
po(O)L _ p(1)L o = ( 2 P o l E 1 ) ( 1  m2), = (2Po lE1)[1  - m2(1 + a)], 00 

p(~)L = (2Po /Ea) [1  + a 2 / 8  - m2(l + a + (9 /8 )a2)] ,  (53) 

E1 = 1 + m 2 - 2rn cos 20 (El /> (1 - m) 2 > 0). 

Equations (46) and (53) lead to the relations 

p(O)L _ p(e~)L = ( P o / E 1 ) 2 m a ,  p(~)L _ p(~)L = ( p o / ( 4 E 1 ) ) ( 9 r n  2 - 1 )a2  

po(O)L p(1)L 0 _ p L  = ( p o / ( c 2 E 1 ) ) 2 m 2 a ,  _ p L  = (po / ( c~ .E1) )2m2a2 ,  oo 

po(2)L o o _ p L  = ( p o / ( 4 c 2 E 1 ) ) a 2 ( c  2 _ m 2 + 9m-a) ,  

which show that  for weak tension @2 > m 2) of the plate with a narrow hole (m > 1/3), the approximate 
stresses at each boundary point decrease with increase in the approximation order, remaining higher than 
the exact stresses. 

The behavior of the contour stresses P ( ~  P ( ~ ) L / p o ,  p(2)L,  and P L / P o  corresponding to the 

approximate and exact solutions obtained for a / b  = 3, m : 0.5, a = 0.3, and c 2 = 0.7 for weak tension is 
shown in Fig. 1 (curves 1-4). One can see that  allowance for nonlinearity leads to a decrease in the contour 
stresses in comparison to the linear solution. This decrease depends on the applied load, the properties of 
the material, and the shape of the hole; it is maximum in the region of maximum stresses (at points of large 
curvature of the contour) and it is minimum in the region of minimum stresses (at points of small curvature 
of the contour). In addition, the behavior of the stress curves shows that  the approximate solutions converge 
to the exact solution. 
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